skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Turbine nozzle leading edge film cooling study in a high speed wind tunnel

Conference ·
OSTI ID:20002439

To achieve high engine efficiencies, modern industrial gas turbine components operate at temperatures that are higher than the maximum allowable airfoil alloy temperatures. Film cooling is an effective method of reducing the heat load to a turbine airfoil and, when combined with internal cooling, the airfoil cooling requirements can be satisfied. Here, film cooling effectiveness was measured from a four-row shower head on a turbine vane surface using the pressure sensitive paint (PSP) technique. Nitrogen gas was used to simulate film cooling flow as well as a tracer gas to indicate oxygen concentration such that film effectiveness by the mass transfer analogy could be obtained. Three blowing ratios were studied for each of the five freestream conditions: a reference condition, a reduced and an increased Reynolds number condition, and a reduced and an increased Mach number condition. The freestream turbulence intensity was kept at 12.0% for all the tests. The PSP was calibrated at various temperatures and pressures to obtain better accuracy before being applied to the airfoil surface. Film effectiveness was measured on both the pressure and suction surfaces. The film effectiveness increased with blowing ratio on the suction surface and on the pressure surface for blowing ratios from 1.5 to 2.0, but decreased on the pressure surface for blowing ratios from 2.0 to 2.5. The effects of freestream Mach number and Reynolds number on shower head film cooling are also discussed.

Research Organization:
Solar Turbines Inc., San Diego, CA (US)
OSTI ID:
20002439
Report Number(s):
CONF-990805-; TRN: IM200002%%439
Resource Relation:
Conference: 33rd National Heat Transfer Conference NHTC'99, Albuquerque, NM (US), 08/15/1999--08/17/1999; Other Information: PBD: 1999; Related Information: In: Proceedings of the 33rd national heat transfer conference NHTC'99, by Jensen, M.K.; Di Marzo, M. [eds.], [850] pages.
Country of Publication:
United States
Language:
English