skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rewetting of a low superheated rod with saturated water

Conference ·
OSTI ID:20002404

The study of the rewetting of a superheated surface has application in several technological fields. It is related to the control mechanism for loss of coolant accident (LOCA) in nuclear reactors. An adsorption model as the precursory mechanism for rewetting of a superheated surface is extended from its application to non-polar liquids to a polar fluid, and modeling calculations are compared with experimental data found in the literature. The adsorption model is based on interfacial forces acting at the tip of the rewetting front, the three-phase region. In this region, solid, liquid and vapor interfaces generate a contact angle that depends on the degree of superheat and describes the velocity of rewetting. The contact angle is a function of interfacial forces calculated through the disjoining pressure of the adsorbed film precursory of the rewetting. The influences of van der Waals and electrostatic intermolecular forces in the film thickness are analyzed. The authors find that the order of magnitude of the film thickness in the controlling region is of a few angstroms: thus, only van der Waals intermolecular forces define the interactions. For the prediction of the velocity of rewetting the temperature profile along the rod's surface is required and a one-dimensional and a two-dimensional heat conduction balances are solved. The thermophysical properties in the adsorption model are predicted by ASPEN PLUS data bank and from ASME steam tables. Variations of the predicted values have a strong influence on the results. The surface boundary condition on the rod contains an evaporative heat transfer coefficient that is calculated from the fitted experimental rewetting velocities and the two-dimensional temperature field in the rod. Using this calculation scheme the values of the evaporative heat transfer coefficient are obtained in the normal range of values. Therefore the adsorption model gives results that are consistent with experimental observations.

Research Organization:
Univ. de las Americas-Puebla, Cholula (MX)
OSTI ID:
20002404
Report Number(s):
CONF-990805-; TRN: US0000294
Resource Relation:
Conference: 33rd National Heat Transfer Conference NHTC'99, Albuquerque, NM (US), 08/15/1999--08/17/1999; Other Information: PBD: 1999; Related Information: In: Proceedings of the 33rd national heat transfer conference NHTC'99, by Jensen, M.K.; Di Marzo, M. [eds.], [1150] pages.
Country of Publication:
United States
Language:
English