skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chaotic behavior on in-phase vibratory conveyors

Conference ·
OSTI ID:20000297

One of the basic building blocks of IBM's computer technology is the thin-film interstitial metallized ceramic (IMC) substrate. The packaging of these substrates employs small input/output (IO) pins to provide both mechanical and electrical connection to the printed circuit board. In the automated manufacturing of the substrate, the input and output pins are individually conveyed by in-line vibratory conveyors. However, a nonperiodic motion of these pins is observed at certain angles of conveyor table tilt that cannot be explained by classical models of friction. This paper models the motion of a single I/O pin on an in-phase, linearly oscillating conveyor using the classical model of friction and compares that result with experimental observations. It is shown here, analytically and experimentally, that when the vibratory conveyor table amplitude and the coefficient of friction between the pin and the table are sufficiently large, the pin is conveyed forward with some velocity. If the conveyor table's angle of tilt is sufficiently large and the coefficient of friction is sufficiently low, the pin may slip backwards just as fast as the conveyor table drives it forward, resulting in a net pin velocity of zero. Surrounding the condition at which the net velocity of the pin is zero is a chaotic basin of attraction in which the pin motion is non-periodic. This basin of attraction was experimentally determined to be bracketed within a range of values of the coefficient of friction. The implications of these theoretical and experimental results are discussed in terms of the practical application of in-phase vibratory conveyors in manufacturing.

Research Organization:
IBM Printing Systems Co., Boulder, CO (US)
OSTI ID:
20000297
Report Number(s):
CONF-9805205-; ISBN 0-8031-2603-4
Resource Relation:
Conference: Wear Processes in Manufacturing, Atlanta, GA (US), 05/06/1998; Other Information: PBD: 1998; Related Information: In: Wear processes in manufacturing. ASTM special technical publication 1362, by Bahadur, S.B.; Magee, J. [eds.], 172 pages.
Country of Publication:
United States
Language:
English

Similar Records

Novel design in pneumatic conveyor eases carbon black handling
Journal Article · Mon Jul 01 00:00:00 EDT 1985 · Chem. Process. (Chicago); (United States) · OSTI ID:20000297

Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion
Technical Report · Wed Sep 01 00:00:00 EDT 2004 · OSTI ID:20000297

Undulatory conveyor tests and evaluation
Technical Report · Tue Jan 01 00:00:00 EST 1974 · OSTI ID:20000297