skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows

Journal Article · · Journal of Computational Physics
 [1]
  1. North Carolina State Univ., Raleigh, NC (United States)

An implicit algorithm for computing viscous flows in chemical nonequilibrium is presented. Emphasis is placed on the numerical efficiency of the time integration scheme, both in terms of periteration workload and overall convergence rate. In this context, several techniques are introduced, including a stable, O(m{sup 2}) approximate factorization of the chemical source Jacobian and implementations of V-cycle and filtered multigrid acceleration methods. A five species-seventeen reaction air model is used to calculate hypersonic viscous flow over a cylinder at conditions corresponding to flight at 5 km/s, 60 km altitude and at 11.36 km/s, 76.42 km altitude. Inviscid calculations using an eleven-species reaction mechanism including ionization are presented for a case involving 11.37 km/s flow at an altitude of 84.6 km. Comparisons among various options for the implicit treatment of the chemical source terms and among different multilevel approaches for convergence acceleration are presented for all simulations.

OSTI ID:
191974
Journal Information:
Journal of Computational Physics, Vol. 123, Issue 1; Other Information: PBD: Jan 1996
Country of Publication:
United States
Language:
English

Similar Records

Multigrid convergence of an implicit symmetric relaxation scheme
Journal Article · Sun May 01 00:00:00 EDT 1994 · AIAA Journal (American Institute of Aeronautics and Astronautics); (United States) · OSTI ID:191974

Progress with multigrid schemes for hypersonic flow problems
Journal Article · Sun Jan 01 00:00:00 EST 1995 · Journal of Computational Physics · OSTI ID:191974

Parallel computing strategies for block multigrid implicit solution of the Euler equations
Journal Article · Sat Aug 01 00:00:00 EDT 1992 · AIAA Journal (American Institute of Aeronautics and Astronautics); (United States) · OSTI ID:191974