skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mapping of the {beta}{sub 2} subunit gene (GABRB2) to microdissected human chromosome 5q34-q35 defines a gene cluster for the most abundant GABA{sub A} receptor isoform

Journal Article · · Genomics
;  [1]
  1. Univ. School of Medicine, Boston, MA (United States)

The {gamma}-aminobutyric acid receptor (GABA{sub A}R) is a multisubunit Cl{sup -} channel that mediates most fast inhibitory synaptic transmission in the central nervous system. Molecular evolution has given rise to many genetic variants of GABA{sub A}R subunits, including {alpha}{sub 1-6}, {beta}{sub 1-4}, {gamma}{sub 1-4}, {sigma}, and {rho}{sub 1-2}, suggesting that an enormous number of combinations of subunits are possible. Here we report that the {beta}{sub 2} gene is located on chromosome 5q34-q35, defining a cluster comprising {alpha}{sub 1}, {beta}{sub 2}, and {gamma}{sub 2} genes that together code for the most abundant GABA{sub A}R isoform. The fact that intron position is conserved in the {beta}{sub 1-3} genes, taken together with the observation that chromosomes 4 and 15 also contain distinct {alpha}-{beta}-{gamma} gene clusters, strongly suggests that an ancestral {alpha}-{beta}-{gamma} cluster was duplicated and translocated to at least two different chromosomes. This organization of GABA{sub A}R gene clusters may have been preserved as linkage provides a mechanism for facilitating coordinate gene expression. 34 refs., 5 figs., 1 tab.

OSTI ID:
183688
Journal Information:
Genomics, Vol. 23, Issue 3; Other Information: PBD: Oct 1994
Country of Publication:
United States
Language:
English