skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction

Abstract

The exploration of the oceans whether for societal, commercial, scientific or military reasons requires efficient and cost effective underwater vehicles. In turn, these vessels require efficient means of producing on board power for the propulsion and hotel load requirements of long endurance missions. The Stirling engine, because of its inherent closed-cycle operation, has long been an attractive candidate for underwater use and now has proved its reliability and maintainability in the arduous environment of a naval submarine application. More recently the Stirling has been considered for use in small long endurance unmanned underwater vessels (UUVs). However, with these type of vehicles the need to carry an on board oxygen supply in a very confined space has presented a number of design problems. The concept of using multi-stage vehicles with disposable energy pods has been explored and appears attractive although a major change in submarine design philosophy will be required if such vehicles are to launched from submarines. Another approach is to use a more space efficient source of oxygen. As seawater contains dissolved oxygen then if this source could be utilized to meet all or at least part of the engine`s need than a major design problem could be overcome.more » In this paper the findings of an initial study into the use of membranes or artificial gill techniques to provide oxygen for a Stirling powered DARPA type vehicle are presented. It has been found that only in certain sea areas is the concept of oxygen extraction feasible for use with power systems. Even in situations where there are sufficient levels of dissolved oxygen the gill system approach appears to have limited utility for UUV applications and a number of practical problems still need to be addressed.« less

Authors:
;  [1]
  1. Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering
Publication Date:
OSTI Identifier:
170430
Report Number(s):
CONF-950729-
TRN: IM9605%%449
Resource Type:
Conference
Resource Relation:
Conference: 30. intersociety energy conversion engineering conference, Orlando, FL (United States), 30 Jul - 5 Aug 1995; Other Information: PBD: 1995; Related Information: Is Part Of Proceedings of the 30. intersociety energy conversion engineering conference. Volume 3; Goswami, D.Y. [ed.] [Univ. of Florida, Gainesville, FL (United States)]; Kannberg, L.D.; Somasundaram, S. [eds.] [Pacific Northwest Lab., Richland, WA (United States)]; Mancini, T.R. [ed.] [Sandia National Labs., Albuquerque, NM (United States)]; PB: 493 p.
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING NOT INCLUDED IN OTHER CATEGORIES; STIRLING ENGINES; UNDERWATER OPERATIONS; OXYGEN; MATERIALS RECOVERY; SEAWATER; SUBMARINES; ROBOTS; DISSOLVED GASES; ECOLOGICAL CONCENTRATION; GEOGRAPHICAL VARIATIONS; MEMBRANE TRANSPORT

Citation Formats

Potter, I J, and Reader, G T. Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction. United States: N. p., 1995. Web.
Potter, I J, & Reader, G T. Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction. United States.
Potter, I J, and Reader, G T. 1995. "Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction". United States.
@article{osti_170430,
title = {Operational feasibility of underwater Stirling engine systems using oxygen-seawater extraction},
author = {Potter, I J and Reader, G T},
abstractNote = {The exploration of the oceans whether for societal, commercial, scientific or military reasons requires efficient and cost effective underwater vehicles. In turn, these vessels require efficient means of producing on board power for the propulsion and hotel load requirements of long endurance missions. The Stirling engine, because of its inherent closed-cycle operation, has long been an attractive candidate for underwater use and now has proved its reliability and maintainability in the arduous environment of a naval submarine application. More recently the Stirling has been considered for use in small long endurance unmanned underwater vessels (UUVs). However, with these type of vehicles the need to carry an on board oxygen supply in a very confined space has presented a number of design problems. The concept of using multi-stage vehicles with disposable energy pods has been explored and appears attractive although a major change in submarine design philosophy will be required if such vehicles are to launched from submarines. Another approach is to use a more space efficient source of oxygen. As seawater contains dissolved oxygen then if this source could be utilized to meet all or at least part of the engine`s need than a major design problem could be overcome. In this paper the findings of an initial study into the use of membranes or artificial gill techniques to provide oxygen for a Stirling powered DARPA type vehicle are presented. It has been found that only in certain sea areas is the concept of oxygen extraction feasible for use with power systems. Even in situations where there are sufficient levels of dissolved oxygen the gill system approach appears to have limited utility for UUV applications and a number of practical problems still need to be addressed.},
doi = {},
url = {https://www.osti.gov/biblio/170430}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Dec 31 00:00:00 EST 1995},
month = {Sun Dec 31 00:00:00 EST 1995}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: