skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual-mode ion switching conducting polymer films as high energy supercapacitor materials

Book ·
OSTI ID:162919
;  [1]
  1. Tokyo Univ. of Agriculture and Technology, Koganei, Tokyo (Japan). Dept. of Applied Chemistry

The electropolymerized polypyrrole films formed from micellar solution of anionic surfactants, viz., Dodecylbenzene sulfonate (DBS), showed potential-dependent anion and cation ion switching behavior and the peculiar columnar structure. The formation process and the redox of the polypyrrole was studied with the in situ atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) methods. In-situ AFM observation clearly indicated that such a columnar structure started to form around critical charge densities of 60--100 mC cm{sup {minus}2}. The cyclic voltammogram for the PPy doped with DBS{sup {minus}} film showed two redox couples, each of which corresponds to a cation and an anion exchange process. Thus, the film behaves as a dual-mode ion doping/undoping exchanger. As the PPy film was prepared in higher concentration of the surfactant dopant, where the micelles are formed in solution, the resulting film showed a considerably higher (ca. three orders of magnitude) diffusion coefficient compared to ordinary PPy films so far reported. Such an enhanced diffusivity of ions could be attributed to a peculiar structure of the polymer formed. The feasibility of such polypyrrole in use of supercapacitor material was discussed.

OSTI ID:
162919
Report Number(s):
CONF-950412-; ISBN 1-55899-296-0; TRN: IM9604%%23
Resource Relation:
Conference: Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 17-21 Apr 1995; Other Information: PBD: 1995; Related Information: Is Part Of Materials for electrochemical energy storage and conversion -- Batteries, capacitors and fuel cells; Doughty, D.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States)]; Vyas, B. [ed.] [AT and T Bell Labs., Murray Hill, NJ (United States)]; Takamura, Tsutomu [ed.] [Rikkyo Univ., Tokyo (Japan)]; Huff, J.R. [ed.] [Ballard Power Corp., Albuquerque, NM (United States)]; PB: 463 p.; Materials Research Society symposium proceedings, Volume 393
Country of Publication:
United States
Language:
English