skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cross-Sectional TEM and X-ray Examination of Radiation-Induced Stress Relaxation of Peened Stainless Steel Surfaces

Journal Article · · Journal of Nuclear Materials

Neutron irradiation-induced relaxation was emulated using proton irradiation in order to determine the expected amount of stress relaxation in the peened surface layer of a BWR core shroud during its 40 year lifetime. Samples of 304 SS were shot peened to induce a compressive residual stress, and then irradiated with 3.2 MV protons at 288 C to four dose levels spanning 0.1-2.0 dpa. One set of specimens was as-peened and a second was pre-injected with 25 appm He. Depth-dependent measurements of internal stress were conducted using successive steps of X-ray line broadening measurement and electropolishing. Results showed that the compressive stress state was progressively relaxed, but was maintained at some level for the majority of the 2 dpa target dose. Helium pre-injection did not significantly affect the relaxation, but the magnitude of thermally-induced relaxation was somewhat greater, although it was observed to be largely a transient, saturable process. A new cross-section technique was developed that allows multiple observations to be made in one specimen at all depths, both in and beyond the peen-damaged range. The as-peened microstructure varies strongly with depth, consisting of deformation twins and dense dislocation networks. The radiation-induced relaxation on the microstructural level was expressed primarily in modification and reduction of the dislocation structure. A comparison was made between the proton-induced relaxation of internal stresses and predictions based on neutron-induced relaxation of externally-applied stresses. The relatively good agreement indicates that proton irradiation is a valid emulation of neutron irradiation for this application.

Research Organization:
Pacific Northwest National Lab., Richland, WA (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15011218
Report Number(s):
PNNL-SA-41499; JNUMAM; KC0201020; TRN: US200505%%106
Journal Information:
Journal of Nuclear Materials, Vol. 336, Issue 2-3; Other Information: PBD: 1 Feb 2005; ISSN 0022-3115
Country of Publication:
United States
Language:
English