skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States

Journal Article · · Climatic Change, 62(1-3):75-113

To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (1995-2015) and three future (2040-2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper focuses on analyses of regional simulations in the Columbia River and Sacramento-San Joaquin River Basins. Results based on the regional simulations show that by mid-century, the average regional warming of 1-2.5oC strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack is about 70%. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation is found to increase by 5 to 15 mm/day (15-20%) along the Cascades and the Sierra. The warming results in increased rainfall over snowfall and reduced snow accumulation (or earlier snowmelt) during the cold season. In the Columbia River Basin, these changes are accompanied by more frequent rain-on-snow events. Overall, they induce higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Such changes could have serious impacts on water resources and agriculture in the western U.S. Changes in surface water and energy budgets in the Columbia River and Sacramento-San Joaquin basins are driven mainly by changes in surface temperature, which are statistically significant at the 0.95 confidence level. Changes in precipitation, however, are spatially incoherent and not statistically significant except for the drying trend during summer.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15006550
Report Number(s):
PNNL-SA-37362; CLCHDX; KP1201020; TRN: US200411%%460
Journal Information:
Climatic Change, 62(1-3):75-113, Vol. 62, Issue 1-3; ISSN 0165-0009
Country of Publication:
United States
Language:
English