skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monolayer-Protected Gold Nanoparticles as an Efficient Stationary Phase for Open Tubular Gas Chromatography using a Square Capillary Model for Chip-Based Gas Chromatography in Square Cornered Microfabricated Channels

Journal Article · · Journal of Chromatography A
 [1];  [2];  [3]
  1. 8408
  2. BATTELLE (PACIFIC NW LAB)
  3. University of Washington

The application of a dodecanethiol monolayer protected gold nanoparticle (MPN) stationary phase within a microchannel environment was explored using a square capillary column as a model for a high-speed, microfabricated gas chromatography (?GC). Successful deposition and evaluation of a dodecanethiol MPN phase within a 1.3 m long, 100?m by 100?m square capillary is reported. Depth of the MPN phase was evaluated using SEM analysis. An average thickness of 15 nm along the capillary walls was determined. While the film depth along the walls was very uniform, the corner depths were greater with the largest observed depth being 430 nm. Overall, an efficient chromatographic system was obtained with a minimum reduced plate height, hmin, of 1.2 for octane (k= 0.22). Characterization of the MPN column was completed using four compound classes (alkanes, alcohols, ketones, and aromatics) that were used to form a 7 component mixture with a 2 second separation. A mixture consisting of a nerve agent simulator in a sample containing analytes that may commonly interfere with detection was also separated in 2 seconds, much faster than a similar separation previously reported using a?GC system in 50 seconds. Application of the square capillary MPN column for a high-speed separation as the second column of a comprehensive two-dimensional gas chromatography system (GC x GC) was also explored. Comparison of the MPN stationary phase was compared to phases employed in previously reported?GC systems.

Research Organization:
Pacific Northwest National Lab., Richland, WA (US), Environmental Molecular Sciences Laboratory (US)
Sponsoring Organization:
US Department of Energy (US)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
15006476
Report Number(s):
PNNL-SA-38986; 3450; TRN: US200411%%126
Journal Information:
Journal of Chromatography A, Vol. 1029, Issue 1-2; Other Information: PBD: 12 Mar 2004
Country of Publication:
United States
Language:
English