skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Double nondisjunction in maternal meiosis II giving rise to a fetus with 48,XXX,+21

Journal Article · · American Journal of Human Genetics
OSTI ID:134579
; ;  [1]
  1. Univ. of Tennessee, Memphis (United States); and others

The occurrence of multiple aneuploidy is quite rare, and the mechanisms by which it arises have not been well-characterized except in cases of 49,XXXXX and 49,XXXXY. These originate by successive nondisjunction of the X chromosomes in meiosis I and meiosis II, giving rise to a gamete with four X chromosomes. Here, we describe a case of double trisomy involving chromosome 21 and the X chromosome. The 19-year-old patient underwent amniocentesis at 17.5 weeks gestation following a positive serum analyte screen (estimated 1/120 risk of Down syndrome). Ultrasound findings at the time of the procedure were ventricular septal defect, dilated renal calyx, clinodactyly, and a two-vessel cord. Cytogenetic analysis revealed a nonmosaic karyotype of 48,XXX,+21. The couple opted for pregnancy termination. A comfimatory karyotype could not be obtained due to microbial contamination of the products of conception. Therefore, we used a {open_quotes}touch prep{close_quotes} procedure to deposit fetal cells on microscope slides and performed interphase FISH (fluorescence in situ hybridization) to confirm the presence of three X chromosomes and three copies of chromosome 21. Microsatellite polymorphisms in the mother, father, and fetus were used to evaluate segregation of the X and 21 chromosomes. Based on the results obtained with the most centromeric loci, both extra chromosomes arose from nondisjunction in maternal meiosis II. More distal markers showed evidence of recombination in both chromosomes. To our knowledge, this is the first report of a double trisomy arising by this mechanism. Based on our results and those reported for tetrasomy/pentasomy X, we postulate that multiple aneuploidies are more likely to arise by related errors (involving a single chromosome or a single cell division) than by independent errors (in different cell divisions or different gametes).

OSTI ID:
134579
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-1313
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English