skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure and expression of mouse mitochondrial voltage dependent anion channel genes

Journal Article · · American Journal of Human Genetics
OSTI ID:133827
; ;  [1]
  1. Baylor College of Medicine, Houston, TX (United States)

Voltage dependent anion channels (VDACs) are small abundant proteins of the outer mitochondrial membrane that interact with the adenine nucleotide translocater and bind glycerol kinase and hexokinase. Kinase binding is developmentally regulated, tissue specific, and increased in various tumor cell lines. VDACs are also components of the peripheral benzodiazepine receptor and GABA{sub A} receptor. Two human VDAC cDNAs have previously been reported, and expression of these isoforms appears ubiquitous. Genomic Southern analysis suggests the presence of other as yet uncharacterised VDAC genes. To study VDAC function in a mammal more amenable to experimental manipulation, we have isolated three mouse VDAC genes by cDNA cloning from a mouse brain cDNA library. DNA sequencing of the cDNAs shows that they share 65-75% amino acid identity. Northern analysis indicates that MVDAC1 is expressed most highly in kidney, heart, and brain. Using an MVDAC3 3{prime} untranslated exon as a probe, three distinct transcripts can be detected. The gene structure for MVDAC3 and MVDAC2 has been completed and suggests that the VDAC isoforms did not arise by gene duplication and divergence. The intron/exon boundaries are not conserved between MVDAC1 and MVDAC3, and MVDAC2 appears to be encoded by a single intronless gene.

OSTI ID:
133827
Report Number(s):
CONF-941009-; ISSN 0002-9297; TRN: 95:005313-0560
Journal Information:
American Journal of Human Genetics, Vol. 55, Issue Suppl.3; Conference: 44. annual meeting of the American Society of Human Genetics, Montreal (Canada), 18-22 Oct 1994; Other Information: PBD: Sep 1994
Country of Publication:
United States
Language:
English