skip to main content

SciTech ConnectSciTech Connect

Title: Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance

Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the ..delta..glgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, ..delta..glgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of QA-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and anmore » enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs.« less
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
1330802
Report Number(s):
NREL/JA-2700-66083
Journal ID: ISSN 2211-9264
DOE Contract Number:
AC36-08GO28308
Resource Type:
Journal Article
Resource Relation:
Journal Name: Algal Research; Journal Volume: 20
Publisher:
Elsevier
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS chlorophyll fluorescence; cyclic electron flow; ethylene; glycogen; cyclic electron flow; homeostasis; metabolic sink; NADPH; photosystem; plastoquinone