skip to main content

SciTech ConnectSciTech Connect

Title: Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

Algorithms and software have been developed for producing variations in plutonium 239 neutron cross sections based on experimental uncertainties and covariances. The varied cross- section sets may be produced as random samples from the multi- variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin- Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances do not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.
Authors:
 [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
1330066
Report Number(s):
LA-UR--16-20344
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING