skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on December 1, 2017

Title: Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys

Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 1013 to 3 × 1016 cm-2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluence regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.
Authors:
 [1] ;  [2] ;  [3] ;  [1] ;  [4] ;  [4] ;  [3] ;  [2] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science
  3. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
Publication Date:
OSTI Identifier:
1329742
Grant/Contract Number:
AC05-00OR22725
Type:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 121; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE Ion irradiation; Solid solution alloy; Nanoindentation; Ion channeling; Molecular dynamic simulation