skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on October 3, 2017

Title: Understanding the effects of laser imprint on plastic-target implosions on OMEGA

Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation–hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity, the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in casesmore » where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λmax = 200. In addition, these studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 10; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION TECHNOLOGY neutrons; x-ray imaging; thermal models; inertial confinement; cameras