skip to main content

SciTech ConnectSciTech Connect

Title: Parallel Infrastructure Modeling and Inversion Module for E4D

Electrical resistivity tomography ERT is a method of imaging the electrical conductivity of the subsurface. Electrical conductivity is a useful metric for understanding the subsurface because it is governed by geomechanical and geochemical properties that drive subsurface systems. ERT works by injecting current into the subsurface across a pair of electrodes, and measuring the corresponding electrical potential response across another pair of electrodes. Many such measurements are strategically taken across an array of electrodes to produce an ERT data set. These data are then processed through a computationally demanding process known as inversion to produce an image of the subsurface conductivity structure that gave rise to the measurements. Data can be inverted to provide 2D images, 3D images, or in the case of time-lapse 3D imaging, 4D images. ERT is generally not well suited for environments with buried electrically conductive infrastructure such as pipes, tanks, or well casings, because these features tend to dominate and degrade ERT images. This reduces or eliminates the utility of ERT imaging where it would otherwise be highly useful for, for example, imaging fluid migration from leaking pipes, imaging soil contamination beneath leaking subusurface tanks, and monitoring contaminant migration in locations with dense network ofmore » metal cased monitoring wells. The location and dimension of buried metallic infrastructure is often known. If so, then the effects of the infrastructure can be explicitly modeled within the ERT imaging algorithm, and thereby removed from the corresponding ERT image. However,there are a number of obstacles limiting this application. 1) Metallic infrastructure cannot be accurately modeled with standard codes because of the large contrast in conductivity between the metal and host material. 2) Modeling infrastructure in true dimension requires the computational mesh to be highly refined near the metal inclusions, which increases computational demands. 3) The ERT imaging algorithm requires specialized modifications to accomodate high conductivty inclusions within the computational mesh. The solution to each of these challenges was implemented within E4D (formerly FERM3D), which is a parallel ERT imaging code developed at PNNL (IPID #30249). The infrastructure modeling module implement in E4D uses a method of decoupling the model at the metallic interface(s) boundaries, into several well posed sub-problems (one for each distinct metallicinclusion) that are subsequently solved and recombined to form the global solution. The approach is based on the immersed interface method, with has been applied for similar problems in other fields (e.g. semiconductor industry). Comparisons to analytic solutions have shown the results to be very accurate, addressing item 1 above. The solution is implemented about an unstructured mesh, which enables arbitrary shapes to be efficiently modelled, thereby addressing item 2 above. In addition, the algorithm is written in parallel and shows excellent scalability, which also addresses equation 2 above. Finally, because only the boundaries of metallic inclusions are modeled, there are no high conductivity cells within the modeling mesh, and the problem described by item 3 above is no longer applicable.« less
Publication Date:
OSTI Identifier:
Report Number(s):
IMI; 003154WKSTN00
DOE Contract Number:
Software Revision:
Software Package Number:
Software Package Contents:
Media Directory; Software Abstract; Media includes Source Code; Text Library; User Guide; Compilation Instructions; Sample Problem Input Data; Sample Problem Output Data; Program Flow Diagram; Program Flow Data; Programmer Documentation; Other;
Software CPU:
Open Source:
Source Code Available:
Other Software Info:
Copyright module, for use in conjunction with the E4D Software, an open source product developed at PNNL.
Research Org:
Pacific Northwest National Laboratory
Sponsoring Org:
United States Department of Energy
Contributing Orgs:
Tim C. Johnson, PNNL
Country of Publication:
United States

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

ESTSC staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, ESTSC will contact you. No further action will be taken until all required information and/or payment is received. Orders are processed within three to five business days.

Software Request