skip to main content

SciTech ConnectSciTech Connect

Title: Ethanol Electro-Oxidation on Ternary Platinum–Rhodium–Tin Nanocatalysts: Insights in the Atomic 3D Structure of the Active Catalytic Phase

Novel insights in the synthesis–structure–catalytic activity relationships of nanostructured trimetallic Pt–Rh–Sn electrocatalysts for the electrocatalytic oxidation of ethanol are reported. In particular, we identify a novel single-phase Rh-doped Pt–Sn Niggliite mineral phase as the source of catalytically active sites for ethanol oxidation; we discuss its morphology, composition, chemical surface state, and the detailed 3D atomic arrangement using high-energy (HE-XRD), atomic pair distribution function (PDF) analysis, and X-ray photoelectron spectroscopy (XPS). The intrinsic ethanol oxidation activity of the active Niggliite phase exceeded those of earlier reports, lending support to the notion that the atomic-scale neighborhood of Pt, Rh, and Sn is conducive to the emergence of active surface catalytic sites under reaction conditions. In situ mechanistic Fourier transform infrared (in situ FTIR) analysis confirms an active 12 electron oxidation reaction channel to CO2 at electrode potentials as low as 450 mV/RHE, demonstrating the favorable efficiency of the PtRhSn Niggliite phase for C–C bond splitting.
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Catalysis; Journal Volume: 4; Journal Issue: 6
American Chemical Society
Research Org:
Advanced Photon Source (APS), Argonne National Laboratory (ANL), Argonne, IL (US)
Sponsoring Org:
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY electrocatalysis; electrochemistry; ethanol oxidation reaction; fuel cells; HE-XRD; in situ FTIR; PDF analysis