skip to main content

SciTech ConnectSciTech Connect

Title: Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe.

The broad-based implementation of thermoelectric materials in converting heat to electricity hinges on the achievement of high conversion efficiency. Here we demonstrate a thermoelectric figure of merit ZT of 2.5 at 923 K by the cumulative integration of several performance-enhancing concepts in a single material system. Using non-equilibrium processing we show that hole-doped samples of PbTe can be heavily alloyed with SrTe well beyond its thermodynamic solubility limit of <1 mol%. The much higher levels of Sr alloyed into the PbTe matrix widen the bandgap and create convergence of the two valence bands of PbTe, greatly boosting the power factors with maximal values over 30 mu Wcm (-1) K (-2). Exceeding the 5 mol% solubility limit leads to endotaxial SrTe nanostructures which produce extremely low lattice thermal conductivity of 0.5 Wm (-1) K (-1) but preserve high hole mobilities because of the matrix/precipitate valence band alignment. The best composition is hole-doped PbTe-8% SrTe.
; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nature Communications; Journal Volume: 7
Research Org:
Argonne National Laboratory (ANL)
Sponsoring Org:
USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division
Country of Publication:
United States