skip to main content

SciTech ConnectSciTech Connect

Title: Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States

Carbon stocks and fluxes in inland waters have been identified as important, but poorly constrained components of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) hydrologic stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/ L, Mean ± Standard Deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear regression models to analyze the impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one selected environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. Overall, urban area and soil clay content show significant negative correlation with POC concentration, while soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density covariate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variationmore » in environmental controls determining POC concentration across the 18 major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically with river order. These findings indicate complex interactions among multiple factors in regulating POC production over different spatial scales and across various sections of the river networks. This complexity together with the large unexplained uncertainty highlight the need for consideration of non-linear processes that control them and developing appropriate methodologies to track the transformation and transport of carbon in these terrestrial-aquatic systems. Such scientific advancements will also benefit greatly the Earth system models that are currently deficient in representing properly this component of global carbon cycle.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Science of the Total Environment, 554-555:266-275
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
riverine carbon; spatial variability; environmental factors; uncertainty; carbon cycle