skip to main content

SciTech ConnectSciTech Connect

Title: Final report for project "Next-Generation Semiconductors for Solar Photoelectrolysis"

In this paper, effective methods have been developed for preparing high-quality LaTiO2N films on conductive La5Ti5O17 substrates that can serve as photoanodes for photoelectrochemical water oxidation. One paper has been written by the post-doc who completed this comprehensive, interdisciplinary study, and it is presently being finalized for submission. Our approach to this system integrates expertise that we have developed in single crystal growth, thin film growth, and thin film post-processing. Through this work, LTON films have been fully optimized for light harvesting, as their band gap is optimally matched with the incident solar spectrum and the film thicknesses have been optimized based on the absolute absorption coefficients that we have measured for this system. The next step is to optimize the co-catalyst functionalization and the solution conditions to maximize the catalytic activity for water oxidation. Since the preliminary tests described here were done without a water oxidation co-catalyst, and since good water oxidation catalysts have previously been identified based on studies of powder samples, this next step is highly likely to be successful.
  1. Stony Brook Univ., NY (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Stony Brook Univ., NY (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
14 SOLAR ENERGY Solar fuel production; solar water splitting; photoelectrolysis; semiconductor