skip to main content

SciTech ConnectSciTech Connect

Title: The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3* to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivitymore » are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute. We also appreciate the support from Sinochem Quanzhou Petrochemical Co. Ltd.« less
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: ACS Catalysis, 6(9):5771-5785
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
syngas; higher alcohol; Cu/ZnO/Al2O3; chain growth probability; cesium; DFT calculations