skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A New, Dispersion-Driven Intermolecular Arrangement for the Benzene–Water Octamer Complex: Isomers and Analysis of their Vibrational Spectra

Journal Article · · Journal of Chemical Theory and Computation

The anharmonic spectra of the gas phase cubic water octamer (W8, D2d and S4 isomers) have been theoretically calculated at the second order Møller-Plesset perturbation (MP2) and the Coupled Cluster with Single, Double and a perturbative estimate of Triple replacements [CCSD(T)] theories. The CCSD(T) harmonic frequencies are the first ones reported for this cluster. An additional band at ~3500 cm-1 is reported, in a spectral area that was not previously accessible experimentally due to technical reasons. The IR spectra of the S4 isomer have a larger number of fundamental bands than the spectra of the D2d isomer, in accordance with the presence of lower symmetry in the former compared to the latter. When W8 interacts with benzene (BZ), the dispersion interaction plays a major role in determining the resulting intermolecular arrangement. Calculations at the MP2, DFT (with the B97XD functional which includes dispersion corrections) and CCSD(T) levels of theory suggest an optimal arrangement in which BZ is almost parallel to one of the faces of the W8 cube. This is in sharp contrast with the previously reported structure in which one of the “free” OH bonds of the W8 cube pointed towards the center of BZ (Science 276, 1678 (1997)) that was determined at the DFT level with the dispersionless B3LYP functional and was used to assign the experimentally measured IR spectra. Five low-lying isomers, three of the S4-like and two of the D2d-like type, were determined and their spectra were assigned. The perturbation of BZ to the W8 bands amounts to (i) the localization of the normal modes of W8 thus resulting in more IR active bands and (ii) the lowering of the overall symmetry of the complex that results in the splitting of the doubly degenerate bands on the bare W8. Our results further suggest that a future recording of the IR spectra in the HOH bending region can definitively aid in the assignment of the various isomers of both the BZ and the BZ-W8 complexes. EM and SSX acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the US DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1322505
Report Number(s):
PNNL-SA-114248; KC0301050
Journal Information:
Journal of Chemical Theory and Computation, Vol. 12, Issue 8; ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English