skip to main content

SciTech ConnectSciTech Connect

Title: General Motors: Final Report for Hydrogen Storage Engineering Center of Excellence

As part of the HSECoE team, the GM team built system models and detailed transport models for on-board hydrogen storage systems using metal hydrides and adsorbent materials. Detailed transport models have been developed for both the metal hydride and adsorbent systems with a focus on optimization of heat exchanger designs with the objective of minimizing the heat exchanger mass. We also performed work in collaboration with our partners on storage media structuring and enhancement studies for the metal hydride and adsorbent materials. Since the hydrogen storage materials are generally characterized by low density and low thermal conductivity, we conducted experiments to form pellets and add thermal conductivity enhancers to the storage material, and to improve cycling stability and durability of the metal hydride and adsorbent materials. Refueling of a MOF-5 pellet with cryogenic hydrogen was studied by developing a detailed two-dimensional axisymmetric COMSOL® model of the process. The effects of pellet permeability, thermal conductivity, and thermal conductivity enhancers were investigated. Our key area of focus has been on designing and building a cryo-adsorption vessel for validation of cryo-adsorption models. The 3-L cryogenic tank was used to study the fast fill and discharge dynamics of a cryo-adsorbent storage system, both experimentallymore » and numerically.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. General Motors Company, Warren, MI (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
09GO19003 -- HSECE-F
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
General Motors Company, Warren, MI (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Program (EE-3F)
Country of Publication:
United States
08 HYDROGEN Hydrogen Storage; sorbents; storage systems; MOF; metal organic frameworks; hydrogen storage engineering center of excellence; adsorbents; metal hydrides