skip to main content

SciTech ConnectSciTech Connect

Title: Why are some Interfaces in Materials Stronger than others?

Grain boundaries (GBs) are often the preferred sites for void nucleation in ductile metals. However, it has been observed that all boundaries do not contribute equally to this process. We present a mechanistic rationale for the role of GBs in damage nucleation in copper, along with a quantitative map for predicting preferred void nucleation at GBs based on molecular dynamics simulations in copper. Simulations show a direct correlation between the void nucleation stress and the ability of a grain boundary to plastically deform by emitting dislocations, during shock compression. Plastic response of a GB, affects the development of stress concentrations believed to be responsible for void nucleation by acting as a dissipation mechanism for the applied stress.
 [1] ;  [1] ;  [1] ;  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2045-2322
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 4; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
Country of Publication:
United States
36 MATERIALS SCIENCE Grain boundary, void nucleation, shock loading