skip to main content

SciTech ConnectSciTech Connect

Title: Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimalmore » HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.« less
; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 2016 American Control Conference (ACC), 6-8 July 2016, Boston, Massachusetts
Piscataway, NJ: Institute of Electrical and Electronics Engineers (IEEE)
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
U.S. Department of Energy, Advanced Research Projects Agency-Energy (ARPA-E)
Country of Publication:
United States
33 ADVANCED PROPULSION SYSTEMS batteries; resistance; hybrid electric vehicles; aging; fuels; engines