skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on April 28, 2017

Title: Quantification of Organic Porosity and Water Accessibility in Marcellus Shale Using Neutron Scattering

Pores within organic matter (OM) are a significant contributor to the total pore system in gas shales. These pores contribute most of the storage capacity in gas shales. Here we present a novel approach to characterize the OM pore structure (including the porosity, specific surface area, pore size distribution, and water accessibility) in Marcellus shale. By using ultrasmall and small-angle neutron scattering, and by exploiting the contrast matching of the shale matrix with suitable mixtures of deuterated and protonated water, both total and water-accessible porosity were measured on centimeter-sized samples from two boreholes from the nanometer to micrometer scale with good statistical coverage. Samples were also measured after combustion at 450 °C. Analysis of scattering data from these procedures allowed quantification of OM porosity and water accessibility. OM hosts 24–47% of the total porosity for both organic-rich and -poor samples. This porosity occupies as much as 29% of the OM volume. In contrast to the current paradigm in the literature that OM porosity is organophilic and therefore not likely to contain water, our results demonstrate that OM pores with widths >20 nm exhibit the characteristics of water accessibility. In conclusion, our approach reveals the complex structure and wetting behavior ofmore » the OM porosity at scales that are hard to interrogate using other techniques.« less
 [1] ;  [2] ;  [3] ;  [4] ;  [1] ;  [5]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Geosciences
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research
  3. The Ohio State Univ., Columbus, OH (United States). School of Earth Sciences
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  5. Pennsylvania State Univ., University Park, PA (United States). Dept. of Geosciences; Pennsylvania State Univ., University Park, PA (United States). Earth and Environmental Systems Inst.
Publication Date:
OSTI Identifier:
Grant/Contract Number:
AC05-00OR22725; DMR-0944772; OCE 11-40159; FG02-OSER15675; 698077; DEB-1342701; EAR 12-39285; EAR 13-31726
Accepted Manuscript
Journal Name:
Energy and Fuels
Additional Journal Information:
Journal Volume: 30; Journal Issue: 6; Journal ID: ISSN 0887-0624
American Chemical Society (ACS)
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
Country of Publication:
United States