skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on July 7, 2017

Title: 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where $$\vec{k}$$• $$\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\vec{B}$$ is the equilibrium magnetic field and $$\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\vec{k}$$ •$$\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.
 [1] ;  [1] ;  [1] ;  [2] ;  [3]
  1. Auburn Univ., AL (United States). Dept. of Physics
  2. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Zhejiang Univ., Hangzhou (China). Institute for Fusion Theory and Simulation
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1070-664X; PHPAEN
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 7; Journal ID: ISSN 1070-664X
American Institute of Physics (AIP)
Research Org:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION normal modes; magnetic fields; electrostatics; magnetic reconnection; particle-in-cell method