skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on March 28, 2017

Title: Thermoelectric properties of semiconductor nanowire networks

To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi2Te3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNW demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.
 [1] ;  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fordham Univ., Bronx, NY (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0021-8979; JAPIAU
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 12; Journal ID: ISSN 0021-8979
American Institute of Physics (AIP)
Research Org:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY material science; semiconductor nano-wires; nanowire networks; thermoelectric materials; phonons; thermal conductivity; resistors