skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Li5V3P8O29 by Materials Project

Abstract

Li5V3P8O29 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.16 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.97–2.18 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.87–2.20 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra.more » There are a spread of Li–O bond distances ranging from 1.90–2.23 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.97–2.18 Å. There are three inequivalent V+4.33+ sites. In the first V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.89–1.99 Å. In the second V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.85–2.00 Å. In the third V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.83–1.99 Å. There are eight inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–45°. There are a spread of P–O bond distances ranging from 1.47–1.63 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–48°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–46°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–36°. There are a spread of P–O bond distances ranging from 1.48–1.61 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 35–37°. There are a spread of P–O bond distances ranging from 1.49–1.59 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 40°. There are a spread of P–O bond distances ranging from 1.49–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–46°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–44°. There are a spread of P–O bond distances ranging from 1.47–1.62 Å. There are twenty-nine inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the third O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fourteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+4.33+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the twentieth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twenty-sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-seventh O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the twenty-eighth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms.« less

Authors:
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
MIT; UC Berkeley; Duke; U Louvain
OSTI Identifier:
1295756
Report Number(s):
mp-765148
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Resource Type:
Data
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; crystal structure; Li5V3P8O29; Li-O-P-V

Citation Formats

The Materials Project. Materials Data on Li5V3P8O29 by Materials Project. United States: N. p., 2017. Web. doi:10.17188/1295756.
The Materials Project. Materials Data on Li5V3P8O29 by Materials Project. United States. https://doi.org/10.17188/1295756
The Materials Project. 2017. "Materials Data on Li5V3P8O29 by Materials Project". United States. https://doi.org/10.17188/1295756. https://www.osti.gov/servlets/purl/1295756.
@article{osti_1295756,
title = {Materials Data on Li5V3P8O29 by Materials Project},
author = {The Materials Project},
abstractNote = {Li5V3P8O29 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. there are five inequivalent Li1+ sites. In the first Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.96–2.16 Å. In the second Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.97–2.18 Å. In the third Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.87–2.20 Å. In the fourth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share a cornercorner with one LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.90–2.23 Å. In the fifth Li1+ site, Li1+ is bonded to four O2- atoms to form distorted LiO4 tetrahedra that share corners with two LiO4 tetrahedra, corners with four PO4 tetrahedra, and an edgeedge with one VO6 octahedra. There are a spread of Li–O bond distances ranging from 1.97–2.18 Å. There are three inequivalent V+4.33+ sites. In the first V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.89–1.99 Å. In the second V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and edges with two LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.85–2.00 Å. In the third V+4.33+ site, V+4.33+ is bonded to six O2- atoms to form VO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one LiO4 tetrahedra. There are a spread of V–O bond distances ranging from 1.83–1.99 Å. There are eight inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–45°. There are a spread of P–O bond distances ranging from 1.47–1.63 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 41–48°. There are a spread of P–O bond distances ranging from 1.51–1.62 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 39–46°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 30–36°. There are a spread of P–O bond distances ranging from 1.48–1.61 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three VO6 octahedra and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 35–37°. There are a spread of P–O bond distances ranging from 1.49–1.59 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedral tilt angles are 40°. There are a spread of P–O bond distances ranging from 1.49–1.62 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with three LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 40–46°. There are a spread of P–O bond distances ranging from 1.50–1.61 Å. In the eighth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two VO6 octahedra, a cornercorner with one PO4 tetrahedra, and corners with two LiO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–44°. There are a spread of P–O bond distances ranging from 1.47–1.62 Å. There are twenty-nine inequivalent O2- sites. In the first O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the third O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a bent 120 degrees geometry to one Li1+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the eleventh O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fourteenth O2- site, O2- is bonded in a single-bond geometry to one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the sixteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the seventeenth O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+4.33+, and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the twentieth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one V+4.33+ and one P5+ atom. In the twenty-sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Li1+, one V+4.33+, and one P5+ atom. In the twenty-seventh O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the twenty-eighth O2- site, O2- is bonded in a trigonal planar geometry to two Li1+ and one P5+ atom. In the twenty-ninth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms.},
doi = {10.17188/1295756},
url = {https://www.osti.gov/biblio/1295756}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jul 21 00:00:00 EDT 2017},
month = {Fri Jul 21 00:00:00 EDT 2017}
}