skip to main content

SciTech ConnectSciTech Connect

Title: Lattice damage and compositional changes in Xe ion irradiated InxGa1-xN (x = 0.32-1.0) single crystals

Lattice disorder and compositional changes in InxGa1-xN (x=0.32, 0.47, 0.7, 0.8 and 1.0) films on GaN/Al2O3 substrates, induced by room-temperature irradiation of 5 MeV Xe ions, have been investigated using both Rutherford backscattering spectrometry under ion-channeling conditions and time-of-flight secondary ion mass spectrometry. The results show that for a fluence of 3E13 cm-2, the relative level of lattice disorder in InxGa1-xN increases monotonically from 59% to 90% with increasing indium concentration x from 0.32 to 0.7; a further increase in x up to 1.0 leads to little increase in the disorder level. In contrast to Ga-rich InxGa1-xN (x=0.32 and 0.47), significant volume swelling of up to ~25% accompanied with oxidation in In-rich InxGa1-xN (x=0.7, 0.8 and 1.0) is observed. In addition, irradiation-induced atomic mixing occurs at the interface of In-rich InxGa1-xN and GaN. The results from this study indicate an extreme susceptibility of the high In-content InxGa1-xN to heavy-ion irradiation, and suggest that cautions must be exercised in applying ion-implantation techniques to these materials at room temperature. Further studies of the irradiation behavior at elevated temperatures are warranted.
; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
48707; 49138; AT2030110
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics, 119(24):Article No. 245704
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org:
Country of Publication:
United States
Ion irradiation; high In-content InGaN; RBS/C; SIMS; Environmental Molecular Sciences Laboratory