skip to main content

SciTech ConnectSciTech Connect

Title: Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve themore » performance of the LHC.« less
 [1] ;  [1] ;  [1] ;  [2] ;  [2] ;  [2] ;  [2]
  1. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  2. European Organization for Nuclear Research (CERN), Geneva (Switzerland)
Publication Date:
OSTI Identifier:
Report Number(s):
FERMILAB-TM--2572-APC; CERN-ACC--2014-0248
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Orgs:
European Organization for Nuclear Research (CERN), Geneva (Switzerland)
Country of Publication:
United States