skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on NiP2H2O7 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1288447· OSTI ID:1288447

NiP2H2O7 crystallizes in the monoclinic P2_1/c space group. The structure is three-dimensional. there are two inequivalent Ni2+ sites. In the first Ni2+ site, Ni2+ is bonded to six O2- atoms to form NiO6 octahedra that share corners with six PO4 tetrahedra and edges with two equivalent NiO6 octahedra. There are a spread of Ni–O bond distances ranging from 2.04–2.15 Å. In the second Ni2+ site, Ni2+ is bonded to six O2- atoms to form NiO6 octahedra that share corners with six PO4 tetrahedra and edges with two equivalent NiO6 octahedra. There are a spread of Ni–O bond distances ranging from 2.00–2.18 Å. There are four inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three NiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–54°. There are a spread of P–O bond distances ranging from 1.49–1.63 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three NiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 51–54°. There are a spread of P–O bond distances ranging from 1.51–1.60 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three NiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 38–51°. There are a spread of P–O bond distances ranging from 1.49–1.63 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three NiO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 52–54°. There are a spread of P–O bond distances ranging from 1.52–1.59 Å. There are four inequivalent H1+ sites. In the first H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.02 Å) and one longer (1.64 Å) H–O bond length. In the second H1+ site, H1+ is bonded in a distorted linear geometry to two O2- atoms. There is one shorter (1.01 Å) and one longer (1.65 Å) H–O bond length. In the third H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. In the fourth H1+ site, H1+ is bonded in a single-bond geometry to one O2- atom. The H–O bond length is 1.00 Å. There are fourteen inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal planar geometry to two Ni2+ and one P5+ atom. In the second O2- site, O2- is bonded in a distorted trigonal planar geometry to two Ni2+ and one P5+ atom. In the third O2- site, O2- is bonded in a distorted trigonal planar geometry to two Ni2+ and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Ni2+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ni2+, one P5+, and one H1+ atom. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ni2+, one P5+, and one H1+ atom. In the seventh O2- site, O2- is bonded in a bent 120 degrees geometry to one P5+ and one H1+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Ni2+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a 3-coordinate geometry to two Ni2+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 120 degrees geometry to one P5+ and one H1+ atom. In the twelfth O2- site, O2- is bonded in a bent 120 degrees geometry to one P5+ and one H1+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to two P5+ atoms. In the fourteenth O2- site, O2- is bonded in a 2-coordinate geometry to one P5+ and one H1+ atom.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1288447
Report Number(s):
mp-746672
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on NaNiP2HO7 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1288447

Materials Data on LiNi2P4H3O14 by Materials Project
Dataset · Fri May 01 00:00:00 EDT 2020 · OSTI ID:1288447

Materials Data on NiP2H2O7 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1288447