skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on November 17, 2016

Title: Towards understanding KOH conditioning of amidoxime-based oolymer adsorbents for sequestering uranium from seawater

Conditioning of polymer fiber adsorbents grafted with amidoxime and carboxylic acid groups is necessary to make the materials hydrophilic for sequestering uranium from seawater. In this paper, spectroscopic techniques were employed to study the effectiveness of the traditional KOH conditioning method (2.5% KOH at 80⁰C) on recently developed high-surface-area amidoxime-based polymer fiber adsorbents developed at Oak Ridge National Laboratory. FTIR spectra reveal that the KOH conditioning process removes the proton from the carboxylic acids and also converts the amidoxime groups to carboxylate groups in the adsorbent. With prolonged KOH treatment (>1 hr) at 80⁰C, physical damage to the adsorbent material occurs which can lead to a significant reduction in the adsorbent's uranium adsorption capability in real seawater during extended exposure times (>21 days). The physical damage to the adsorbent can be minimized by lowering KOH conditioning temperature. For the high-surface-area amidoxime-based adsorbents, 20 min of conditioning in 2.5% KOH at 80⁰C or 1 hr of conditioning in 2.5% KOH at 60⁰C appears sufficient to achieve de-protonation of the carboxylic acid with minimal harmful effects to the adsorbent material. Lastly, the use of NaOH instead of KOH can also reduce the cost of the base treatment process required for conditioning themore » amidoxime-based sorbents with minimal loss of adsorption capacity (≤7%).« less
 [1] ;  [2] ;  [2] ;  [2] ;  [2] ;  [3] ;  [1]
  1. Univ. of Idaho, Moscow, ID (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 5; Journal Issue: 122; Journal ID: ISSN 2046-2069
Royal Society of Chemistry
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY uranium; amidoxime; KOH; conditioning; adsorbents; seawater