skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on LiFe4P7O24 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1285215· OSTI ID:1285215

LiFe4P7O24 crystallizes in the triclinic P-1 space group. The structure is three-dimensional. Li1+ is bonded in a 1-coordinate geometry to three O2- atoms. There are a spread of Li–O bond distances ranging from 2.67–2.81 Å. There are four inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.91–2.19 Å. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.93–2.19 Å. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.95–2.20 Å. In the fourth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six PO4 tetrahedra and an edgeedge with one FeO6 octahedra. There are a spread of Fe–O bond distances ranging from 1.96–2.13 Å. There are seven inequivalent P5+ sites. In the first P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 36–46°. There are a spread of P–O bond distances ranging from 1.52–1.64 Å. In the second P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 16–55°. There are a spread of P–O bond distances ranging from 1.51–1.65 Å. In the third P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 17–60°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the fourth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with five FeO6 octahedra. The corner-sharing octahedra tilt angles range from 18–57°. There are a spread of P–O bond distances ranging from 1.53–1.58 Å. In the fifth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with four FeO6 octahedra and a cornercorner with one PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 9–54°. There are a spread of P–O bond distances ranging from 1.51–1.61 Å. In the sixth P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with three FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 23–54°. There are a spread of P–O bond distances ranging from 1.49–1.61 Å. In the seventh P5+ site, P5+ is bonded to four O2- atoms to form PO4 tetrahedra that share corners with two FeO6 octahedra and corners with two PO4 tetrahedra. The corner-sharing octahedra tilt angles range from 28–39°. There are a spread of P–O bond distances ranging from 1.50–1.62 Å. There are twenty-four inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the second O2- site, O2- is bonded in a bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the third O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the fourth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the fifth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Fe3+ and one P5+ atom. In the sixth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventh O2- site, O2- is bonded in a linear geometry to one Fe3+ and one P5+ atom. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to two equivalent Fe3+ and one P5+ atom. In the ninth O2- site, O2- is bonded in a 3-coordinate geometry to two equivalent Fe3+ and one P5+ atom. In the tenth O2- site, O2- is bonded in a distorted trigonal planar geometry to two Fe3+ and one P5+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twelfth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the fifteenth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two P5+ atoms. In the sixteenth O2- site, O2- is bonded in a bent 120 degrees geometry to two P5+ atoms. In the seventeenth O2- site, O2- is bonded in a distorted linear geometry to one Fe3+ and one P5+ atom. In the eighteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the nineteenth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twentieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Fe3+ and one P5+ atom. In the twenty-first O2- site, O2- is bonded in a 3-coordinate geometry to two Fe3+ and one P5+ atom. In the twenty-second O2- site, O2- is bonded in a 2-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-third O2- site, O2- is bonded in a 3-coordinate geometry to one Li1+, one Fe3+, and one P5+ atom. In the twenty-fourth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to two P5+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1285215
Report Number(s):
mp-697800
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on MnFe(PO4)2 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1285215

Materials Data on Mn2Fe(PO4)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1285215

Materials Data on MnFeCo(PO4)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1285215