skip to main content

SciTech ConnectSciTech Connect

Title: Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0887-0624
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Energy and Fuels; Journal Volume: 30; Journal Issue: 6
American Chemical Society (ACS)
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
Country of Publication:
United States
09 BIOMASS FUELS fast pyrolysis; simulation; biomass