skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on April 25, 2017

Title: Incorporating physically-based microstructures in materials modeling: Bridging phase field and crystal plasticity frameworks

Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FE meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g.more » additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [2] ;  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0965-0393; 644874
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Modelling and Simulation in Materials Science and Engineering
Additional Journal Information:
Journal Volume: 24; Journal Issue: 4; Journal ID: ISSN 0965-0393
IOP Publishing
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE phase field; crystal plasticity; finite element method; hex meshing