skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on May 19, 2017

Title: Dispersing nanoparticles in a polymer film via solvent evaporation

Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier to prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.
 [1] ;  [2]
  1. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 2161-1653; 644871
Grant/Contract Number:
Accepted Manuscript
Journal Name:
ACS Macro Letters
Additional Journal Information:
Journal Volume: 5; Journal Issue: 6; Journal ID: ISSN 2161-1653
American Chemical Society
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States