skip to main content

SciTech ConnectSciTech Connect

Title: Heterobimetallic zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons

Here, direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 5; Journal ID: ISSN 2045-2322
Nature Publishing Group
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Country of Publication:
United States
09 BIOMASS FUELS catalytic mechanisms; heterogeneous catalysis