skip to main content

SciTech ConnectSciTech Connect

Title: Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Presented at the 43rd IEEE Photovoltaic Specialists Conference, 5-10 June 2016, Portland, Oregon
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), PREDICTS (Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar) Program
Country of Publication:
United States
14 SOLAR ENERGY; 47 OTHER INSTRUMENTATION antireflective; adhesion; concentrator photovoltaic; delamination; durability; multijunction cell; reliability