skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Climate specific thermomechanical fatigue of flat plate photovoltaic module solder joints

Journal Article · · Microelectronics and Reliability

FEM simulations of PbSn solder fatigue damage are used to evaluate seven cities that represent a variety of climatic zones. It is shown that the rate of solder fatigue damage is not ranked with the cities' climate designations. For an accurate ranking, the mean maximum daily temperature, daily temperature change and a characteristic of clouding events are all required. A physics-based empirical equation is presented that accurately calculates solder fatigue damage according to these three factors. An FEM comparison of solder damage accumulated through service and thermal cycling demonstrates the number of cycles required for an equivalent exposure. For an equivalent 25-year exposure, the number of thermal cycles (-40 degrees C to 85 degrees C) required ranged from roughly 100 to 630 for the cities examined. It is demonstrated that increasing the maximum cycle temperature may significantly reduce the number of thermal cycles required for an equivalent exposure.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; Solar Energy Research Institute for India and the U.S. (SERIIUS)
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1257746
Report Number(s):
NREL/JA-5J00-65152
Journal Information:
Microelectronics and Reliability, Vol. 62; Related Information: Microelectronics Reliability; ISSN 0026-2714
Country of Publication:
United States
Language:
English