skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/jacs.5b09529· OSTI ID:1256888

Peptide-enabled nanoparticle (NP) synthesis routes can create and/or assemble functional nanomaterials under environmentally friendly conditions, with properties dictated by complex interactions at the biotic/abiotic interface. Manipulation of this interface through sequence modification can provide the capability for material properties to be tailored to create enhanced materials for energy, catalysis, and sensing applications. Fully realizing the potential of these materials requires a comprehensive understanding of sequence-dependent structure/function relationships that is presently lacking. In this work, the atomic-scale structures of a series of peptide-capped Au NPs are determined using a combination of atomic pair distribution function analysis of high-energy X-ray diffraction data and advanced molecular dynamics (MD) simulations. The Au NPs produced with different peptide sequences exhibit varying degrees of catalytic activity for the exemplar reaction 4-nitrophenol reduction. The experimentally derived atomic-scale NP configurations reveal sequence-dependent differences in structural order at the NP surface. Replica exchange with solute-tempering MD simulations are then used to predict the morphology of the peptide overlayer on these Au NPs and identify factors determining the structure/catalytic properties relationship. We show that the amount of exposed Au surface, the underlying surface structural disorder, and the interaction strength of the peptide with the Au surface all influence catalytic performance. A simplified computational prediction of catalytic performance is developed that can potentially serve as a screening tool for future studies. Our approach provides a platform for broadening the analysis of catalytic peptide-enabled metallic NP systems, potentially allowing for the development of rational design rules for property enhancement.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division; US Air Force Office of Scientific Research (AFOSR); National Research Council
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1256888
Journal Information:
Journal of the American Chemical Society, Vol. 138, Issue 2; ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English

Related Subjects