skip to main content

SciTech ConnectSciTech Connect

Title: Toward Interpreting Failure in Sintered-Silver Interconnection Systems

The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silver interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.
 [1] ;  [1]
  1. ORNL
Publication Date:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 2016 IMAPS HiTEC, Albuquerque, NM, USA, 20160510, 20160510
Research Org:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
EE USDOE - Office of Energy Efficiency and Renewable Energy (EE)
Country of Publication:
United States