skip to main content

SciTech ConnectSciTech Connect

Title: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Lastly, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
 [1] ;  [2] ;  [3] ;  [3] ;  [3] ;  [3] ;  [3] ;  [2] ;  [3] ;  [3] ;  [3] ;  [4]
  1. Zhejiang Univ. of Technology, Hangzhou (China); Stanford Univ., Stanford, CA (United States)
  2. Zhejiang Univ. of Technology, Hangzhou (China)
  3. Stanford Univ., Stanford, CA (United States)
  4. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Nature Publishing Group
Research Org:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States