skip to main content

SciTech ConnectSciTech Connect

Title: Sintering-resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework

Developing supported single-site catalysts is an important goal in heterogeneous catalysis, since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based MOF, NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a metal–organic framework (MOF) (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0002-7863; KC0307010
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of the American Chemical Society; Journal Volume: 138; Journal Issue: 6
American Chemical Society (ACS)
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States