skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer

Journal Article · · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry

The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical forcefield (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through sidechain-sidechain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described. MDD was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative at Pacific Northwest National Laboratory. Research was funded by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MDB acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Material & Engineering. CJM acknowledges support from US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1254562
Report Number(s):
PNNL-SA-115083; KC0301050; KC0203010
Journal Information:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry, Vol. 120, Issue 9; ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Peptoid Backbone Flexibilility Dictates Its Interaction with Water and Surfaces: A Molecular Dynamics Investigation
Journal Article · Tue Jan 23 00:00:00 EST 2018 · Biomacromolecules · OSTI ID:1254562

Local Aqueous Solvation Structure Around Ca2+ During Ca2+---Cl– Pair Formation
Journal Article · Thu Mar 03 00:00:00 EST 2016 · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry · OSTI ID:1254562

Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation
Journal Article · Thu Apr 14 00:00:00 EDT 2016 · Journal of Physical Chemistry. C · OSTI ID:1254562

Related Subjects