skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Principle Findings from Development of a Recirculated Exhaust Gas Intake Sensor (REGIS) Enabling Cost-Effective Fuel Efficiency Improvement

Technical Report ·
DOI:https://doi.org/10.2172/1253161· OSTI ID:1253161
 [1]
  1. Robert Bosch LLC, Farmington Hills, MI (United States)

Kick-off of the Bosch scope of work for the REGIS project started in October 2012. The primary work-packages included in the Bosch scope of work were the following: overall project management, development of the EGR sensor (design of sensor element, design of protection tube, and design of mounting orientation), development of EGR system control strategy, build-up of prototype sensors, evaluation of system performance with the new sensor and the new control strategy, long-term durability testing, and development of a 2nd generation sensor concept for continued technology development after the REGIS project. The University of Clemson was a partner with Bosch in the REGIS project. The Clemson scope of work for the REGIS project started in June 2013. The primary work-packages included in the Clemson scope of work were the following: development of EGR system control strategy, and evaluation of system performance with the new sensor and new control strategy. This project was split into phase I, phase II and phase III. Phase I work was completed by the end of June 2014 and included the following primary work packages: development of sensor technical requirements, assembly of engine testbench at Clemson, design concept for sensor housing, connector, and mounting orientation, build-up of EGR flow test benches at Bosch, and build-up of first sensor prototypes. Phase II work was completed by the end of June 2015 and included the following primary work pack ages: development of an optimizing function and demonstration of robustness of sensor, system control strategy implementation and initial validation, completion of engine in the loop testing of developed control algorithm, completion of sensor testing including characteristic line, synthetic gas test stand, and pressure dependency characterization, demonstration of benefits of control w/o sensing via simulation, development of 2nd generation sensor concept. Notable technical achievements from phase II were the following: publication of two new technical papers by Clemson detailing the control strategies used for the EGR system control. The two papers was published in the 2016 SAE World Congress in April 2016. The titles of each paper are, “Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines,” by K. Siokos, and “A Control Algorithm for Low Pressure – EGR Systems using a Smith Predictor with Intake Oxygen Sensor Feedback”, by R. Koli. All phase III work packages have been completed. The primary work packages in phase III were the following: completion of long-term sensor durability testing, final demonstration of benefits of EGR control w/o sensing, final decision of the second generation sensor development path.

Research Organization:
Robert Bosch LLC, Farmington Hills, MI (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
EE0005975
OSTI ID:
1253161
Country of Publication:
United States
Language:
English