skip to main content

SciTech ConnectSciTech Connect

Title: Modeling magnetic fields from a DC power cable buried beneath San Francisco Bay based on empirical measurements

Here, the Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) beneath the San Francisco Estuary. The TBC runs parallel to the migratory route of various marine species, including green sturgeon, Chinook salmon, and steelhead trout. In July and August 2014, an extensive series of magnetic field measurements were taken using a pair of submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles that cross the cable’s path; these included the San Francisco-Oakland Bay Bridge (BB), the Richmond-San Rafael Bridge (RSR), the Benicia- Martinez Bridge (Ben) and an area in San Pablo Bay (SP) in which a bridge is not present. In this paper, we apply basic formulas that ideally describe the magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable that are otherwise not immediately observable. Magnetic field profiles from measurements taken along 170 survey lines were inspected visually for evidence of a distinct pattern representing the presence ofmore » the cable. Many profiles were dominated by field distortions unrelated to the cable caused by bridge structures or other submerged objects, and the cable’s contribution to the field was not detectable. BB, with 40 of the survey lines, did not yield usable data for these reasons. The unrelated anomalies could be up to 100 times greater than those from the cable. In total, discernible magnetic field profiles measured from 76 survey lines were regressed against the equations, representing eight days of measurement. The modeled field anomalies due to the cable (the difference between the maximum and minimum field along the survey line at the cable crossing) were virtually identical to the measured values. The modeling yielded a pooled cable depth below the bay floor of 2.06 m (±1.46 std dev), and estimated the angle to the horizontal of the imaginary line connecting the crosssectional center of the cable’s two conductors (0.1143 m apart) as 178.9° ±61.9° (std dev) for Ben, 78.6°±37.0° (std dev) for RSR, and 139.9°±27.4° (std dev) for SP. The mean of the eight daily average currents derived from the regressions was 986 ±185 amperes (A) (std dev), as compared to 722 ±95 A (std dev) provided by Trans Bay Cable LLC. Overall, the regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations.« less
 [1] ;  [2] ;  [2] ;  [3]
  1. Electrical Power Research Institute, Palo Alto, CA (United States)
  2. Univ. of California, Davis, CA (United States)
  3. Univ. Miguel, Hernandez de Elche (Spain)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Additional Journal Information:
Journal Volume: 11; Journal Issue: 2; Journal ID: ISSN 1932-6203
Public Library of Science
Research Org:
Electric Power Research Institute, Palo Alto, CA (United States)
Sponsoring Org:
Country of Publication:
United States
magnetic fields; magnetometers; surveys; geomagnetism; animal migration; marine fish; sturgeons; trout