skip to main content

SciTech ConnectSciTech Connect

Title: Integrated Process for the Catalytic Conversion of Biomass-Derived Syngas into Transportation Fuels

Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of thesemore » catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.« less
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Green Chemistry, 18(7):1880-1891
Research Org:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
Sponsoring Org:
Country of Publication:
United States
biomass, syngas, biofuel, catalyst, mixed oxides, oligomerization, mixed oxygenates, ethanol, isobutene, jet fuel