skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on April 7, 2017

Title: High-pressure high-temperature phase diagram of gadolinium studied using a boron-doped heater anvil

A boron-doped designer heater anvil is used in conjunction with powder x-ray diffraction to collect structural information on a sample of quasi-hydrostatically loaded gadolinium metal up to pressures above 8GPa and 600K. The heater anvil consists of a natural diamond anvil that has been surface modified with a homoepitaxially grown chemical-vapor-deposited layer of conducting boron-doped diamond, and is used as a DC heating element. Internally insulating both diamond anvils with sapphire support seats allows for heating and cooling of the high-pressure area on the order of a few tens of seconds. This device is then used to scan the phase diagram of the sample by oscillating the temperature while continuously increasing the externally applied pressure and collecting in situ time-resolved powder diffraction images. In the pressure-temperature range covered in this experiment, the gadolinium sample is observed in its hcp, αSm, and dhcp phases. Under this temperature cycling, the hcp → αSm transition proceeds in discontinuous steps at points along the expected phase boundary. From these measurements (representing only one hour of synchrotron x-ray collection time), a single-experiment equation of state and phase diagram of each phase of gadolinium is presented for the range of 0–10GPa and 300–650K
 [1] ;  [1] ;  [2] ;  [1]
  1. Univ. of Alabama at Birmingham, Birmingham, AL (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 119; Journal Issue: 13; Journal ID: ISSN 0021-8979
American Institute of Physics (AIP)
Research Org:
Univ. of Alabama at Birmingham, Birmingham, AL (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
36 MATERIALS SCIENCE high-pressure high-temperature; rare earth metals; phase diagrams; X-ray diffraction; gadolinium; heaters; equations of state; high pressure